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RIGOROUS BOUNDS FOR THE CALCULATED DIELECTRIC CONSTANTS OF
FERROELECTRIC POLYM1ERS

MARTIN G..BROADHIURST
National Bureau of Standards, Washington, D.C. 20234

Abstract-- A theory is presented for calculating rigorous
upper and lower bounds for the dielectric constant of a semi-
crystalline polymer in terms of the volume fraction of crystal-
line phase, the dielectric constant of the liquid phase and
the anisotropic dielectric tensor of the crystalline phase.
Also required are two orientation functions <cos29> and
<Cos2a> where- defines the tilt of crystal lamellae and a the
orientation of the electric moment of each crystal with
respect to the measuring field. Bounds are presented for
polyvinylidene fluoride for a variety of orientations,-

INTRODUCTION

The dielectric constants of polyvinylidene fluoride (PVDF) and

related ferroelectric polymers and copolymers are of interest in

several ways. PVDF has been used for dielectric films in capacitors

since long before its ferroelectric properties were recognized.

For capacitors, a high-c dielectric is desirable for reducing

capacitor size and cost. (Throughout this paper we use c to mean

the dielectric constant of a film measured at audio frequencies

normal to the larger film surface). The c, of PVDF is important

also in some piezoelectric-and pyroelectric applications such as

hydrophones and vidicon elements where decreased £ means increased

voltage sensitivity.

Being able to control c is often desirable. It has long been

recognized that drawing (stretching) a PVDF film raises its c and,

.. .. partly for this reason, PVDF capacitor films are usually either

* .- ... uniaxially or biaxially drawn. Recently, interesting butterfly-

shaped dielectric-hysteresis patterns, such as the one shown in

Figure 1, have been observed . Here, t is measured at 10 Hz while

the electric field is cycled at 3xlU 0 to 10-2 liz between ±6kV.

These data show that poling also significantly affects c.
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FICURE 1. Room temperature dielectric hysteresis of 6 uim,
mostly 0 phase PVDF film drawn by rolling to 5
times the original length. 1

Two early models to explain the increase of c of PVDF with

drawing have been proposed. The first model2 emphasizes the role

of the liquid phase. The molecules are assumed to orient prefer-

entially in the draw direction, so that rotation of the dipoles

about the long molecular axis provides an increased contribution

to c. A second model3 considers orientation of stacks of crystal

and amorphous lamellae. In this model drawing aligns the lamellae

normal to the draw direction and thereby increases the electric

field in the phase of highest e. Both models account for an

Increase. in c with drawing. Most researchers have assumed that

the liquid phase has the higher c. In this paper I will develop

more completely the model of oriented liquid-crystal lamellae.

This model has a better chance than does the oriented liquid

model, of accounting for the dependence of C on poling, since the

2
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remnant polarization most probably resides in the crystalline
5-8

phase . I will also present evidence that the highest dielectric

constant comes from one direction in the crystalline phase. 4

An important detailed treatment of the c of the liquid-crys-
4

tal-lamellae model has been published recently by Boyd . He

assumed the basic morphology of semicrystalline polymers is thin

lamellar crystals separated by thin layers of liquid polymer. He

considered the c to be isotropic in both phases. He obtained tight

and rigorous upper and lower bounds for c in three orthogonal direc-

tions in terms of a single orientation function <cos28> where 6 is

the angle of tilt of the normal of the lamellar stacks with respect

to a reference direction. Here I will modify the theory to account

for anisotropic crystalline lamellae. This extension introduces

one additional orientation function <cos 2a> where a is the angle

between the direction e is measured and the electric moments of

the crystals. Six orientation functions must be provided to

obtain c in three orthogonal directions.

THEORY

We assume that. PVDF has a morphology typical of semicrystalline

polymers as shown in Figure 2.

The crystals are shown in a polar, chain-folded orthorhombic

crystal phase with different crystal c's, £c, in the x', y' and z'

directions. The liquid is assumed isotropic with c=c I. The x',

S y' and z' axes correspond respectively to the direction of the

electric moment, the direction normal to both the moment and mole-

•cular chain and the direction normal to the crystal lamellae. This

structure is a reasonable approximation to any of the polar phases

of PVDF.

We now fix a new coordinate system x, y, z in a sample as

shown in Figure 3.

The upper, cUp and lower bounds L, for C are derived from

assuming respectively a uniform electric field E and a uniform

3 $
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FIGURE 2. Assumed morphology and coordinates of a stack of

liquid and crystal lamellae
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4

electric displacement D throughout the sample. These bounds are

U2

• DT (Tc' Tl)D/D 2 (2)

We are concerned here with the c in the z direction only so we

choose
E - 00 , and D 0 (3) '

ET and DT are the transposed vectors of E and D, and E and D are
.0 0their magnitudes. The dielectric tensors for the stack are

f\s(' o o o

and -1

S o c£s(y')o)(5

is an orthogonal rotational transformation matrix which trans-

forms a vector in the x', y', z' coordinate system to one in the

x, y, z coordinate system. I used the transformation matrix

given by Goldstein
9

(co. cose-cose sin4* sino -sn0 Cos4-cosO sin4 cos4 sine sIn6
Tm iS# sino + cosO cos* sin* -s In sIn*+cosO cos*, cos+ -sine coso) (6)

SWO sIn+ sinO coso CosO

The rcsults of evaluating Eqs. (1) and (2) are:
CU -' (I-A-B)cs(X')+Bcs(y' )+Ac(z') (7)

C L- 1/(1-A-B)/s(X')+/cS(y'.)+,/es(Z' ) (8)
where

A r <cos2 (z'z)>-<cos2e> (9)

B - <co82 (x'z)>-<(sinOcos) 2 >ccos 2 g> (10)

Cs(X')-(-V)cl+VC(c') (11)

5

i I



M. G. BROADHURST

Cs(y' )(1-V)c 1+VCc(y') (12)

Cs(Z')1n1[(l-V)/ci+V/c(z1 )J (13)

where V is the volume fraction of crystals.

We now need values for c' and the ec's. Consider the case of

O-phase PVDF where the CH2-CF2 dipole moment is normal to the mole-

cular chain axis. Librational motions-of the dipole about the

chain axis contribute to e in the y'/direction. The:.c of such a

harmonic librator is given by,

S-1 + Nm2 <>/2cokT (14)

where for 8 phase PVDF Nm=0.2 Cm is the remnant dipole moment

per unit volume1 0, <,p>1/2. 16' is the root mean squared libra-

tional amplitude10 at T = 300K, m = 117 x 10-30 Cm (equivalent to

10 CH 2-CF2 dipoles)
11 is the dipole moment of an effectively inde-

pendently librating molecular segment, k is Boltzmanns constant
Lt

and o the permittivity of free space. From Eq. (14) we find
0

ec (y')=25. c (X'):c (z'):3 are chosen because they result
c c c

primarily from atomic and electronic displacement.polarization.

1 =12 from an c-vs-temperature extrapolation of c measured above

the melting point12. We use a typical crystal-volume-fraction

of V=0.5.

For sample calculations, we consider films whose state of

polarization is specified by <cos2 i> (see Figure 3). For an un-

poled sample <cos2 >-<sin 20=l/2. For a sample poled as much as

possible in the z direction, <cos 2 >=0 and for one poled as much

as possible in the x-y plane, <cos2 i>-l. For these three limiting

cases, * and 0 are uncorrelated and we can use BE<(sin0cos) 2 >=

<sin2O><cos2j,> or Bu(I-A)<cos2 >. In general, one 'cannot assume

that 0 and 4 are uncorrelated and must avoid this simplification.

RESULTS

The results of the calculation are summarized in Figure 4. The

upper and lower bounds on c are shown as a function of <cos
2o>

6
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1. We now have a quantitative evaluation of a model for c of a

ferroelectric semicrystalline polymer and calculated values of c

for films of PVDF in various states of crystal orientation and

polarization. The calculated values of c are in good accord with

observed data.

2. We can see the limits of e that can be achieved by controlling

orientation, polarization and crystallinity. We see what conditions

must be met to achieve high, low or intermediate values of c and

what sacrifice must be made for example in polarization to achieve

a particular c. We can better relate c to processing variables

such as draw ratio and applied poling fields.

3. We can use the results to better understand the c hysteresis

of Figure 1 and hence the polarization process in PVDF. In this

case, we see that cycling the poling field causes the electric

moments to align strongly in the direction of the field at large

fields and slightly in the plane of the film at values of field

just below the coercive field.

4. We can use the theory to determine the crystal dielectric

tensor and the liquid dielectric constant of semicrystalline poly-

mers from orientation functions and the c's measured for semi-

crystalline films of the pol3mer. This knowledge is of considera-

ble value in analyzing dielectric relaxation strengths and shapes

to obtain their source (liquid or crystalline) and their orienta-

tion.

5. The analysis extends Boyds treatment4 to anisotropic crystals

without significantly increasing the complexity of the calculations.
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